GCSE to A Level 'Bridging the Gap' ANSWERS

Task 1:

Task 2: Use a Periodic Table to complete the table below:

Atom or lon	Atomic Number	Mass number	Number of protons	Number of neutrons	Number of electrons	Electron Structure
${ }^{16} \mathrm{O}^{2-}$	8	16	8	8	10	$[2,8]^{2-}$
${ }^{31} \mathrm{P}$	15	31	15	16	15	$2,8,5$
${ }^{27} \mathrm{Al}$	13	27	13	14	13	$2,8,3$
${ }^{27} \mathrm{Al}^{1+}$	13	27	13	14	10	$[2,8]^{3+}$
${ }^{32} \mathrm{~S}^{2-}$	16	32	16	16	18	$[2,8,8]^{2-}$
${ }^{24} \mathrm{Mg}^{2+}$	12	24	12	12	10	$[2,8]^{2+}$

Task 3

(C)

Task 4

A = Simple Molecular, B = Giant Ionic, C = Metallic, D = Giant Covalent, E = Simple Molecular

Task 5 Doesn't exist....

Task 6: Write the formula below for these substances (you will need to use the table above and a Periodic Table)

1. Silver Bromide
AgBr
2. Sodium Carbonate
$\mathrm{Na}_{2} \mathrm{CO}_{3}$
3. Potassium Oxide
$\mathrm{K}_{2} \mathrm{O}$
4. Iron (III) Oxide
$\mathrm{Fe}_{2} \mathrm{O}_{3}$
5. Chromium (III) Chloride CrCl_{3}
6. Calcium Hydroxide $\mathrm{Ca}(\mathrm{OH})_{2}$
7. Lead (I) Oxide $\quad \mathrm{Pb}_{2} \mathrm{O}$
8. Rubidium Carbonate $\mathrm{Rb}_{2} \mathrm{CO}_{3}$
9. Zinc Hydrogencarbonate $\mathrm{Zn}\left(\mathrm{HCO}_{3}\right)_{2}$
10. Ammonium Sulfate $\quad\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$
11. Gallium Hydroxide
$\mathrm{Ga}(\mathrm{OH})_{3}$
12. Strontium Selenide SrSe

Task 7: Complete and Balance the following symbol equations where necessary

1. $\mathrm{Ca}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{CaSO}_{4}+\mathrm{H}_{2}$
2. $2 \mathrm{CO}+\mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2}$
3. $\mathrm{Li}_{2} \mathrm{CO}_{3}+2 \mathrm{HCl} \rightarrow 2 \mathrm{LiCl}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$
4. $\mathrm{Fe}_{2} \mathrm{O}_{3}+6 \mathrm{HCl} \rightarrow 2 \mathrm{FeCl}_{3}+3 \mathrm{H}_{2} \mathrm{O}$
5. $4 \mathrm{NH}_{3}+5 \mathrm{O}_{2} \rightarrow 4 \mathrm{NO}+6 \mathrm{H}_{2} \mathrm{O}$
6. $2 \mathrm{C}_{2} \mathrm{H}_{6}+7 \mathrm{O}_{2} \rightarrow 4 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O}$

Task 8: Calculate the relative molecule mass (Mr) of:
a. $\mathrm{H}_{2}=2$
b. $\mathrm{Ne}=20$
c. $\quad \mathrm{NH}_{3}=17$
d. $\mathrm{Ca}(\mathrm{OH})_{2}=74$
e. $\mathrm{K}_{2} \mathrm{SO}_{4}=174$
f. $\mathrm{NH}_{4} \mathrm{NO}_{3}=80$

Task 9: Attempt these questions - you will need to use the equations above and the ratio of moles in the chemical equations given.

1. What mass of Oxygen is needed to react with 8.5 g of hydrogen sulphide?

$$
2 \mathrm{H}_{2} \mathrm{~S}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{SO}_{2}+2 \mathrm{H}_{2} \mathrm{O}
$$

Mr of $\mathrm{H} 2 \mathrm{~S}=34$

Moles of H2S $=8.5 / 34=0.25$ moles

Moles of Oxygen $=0.25 \times 3 / 2=0.375$ moles

Mass of Oxygen $=0.375 \times 32=12 \mathrm{~g}$
2. What mass of potassium oxide is formed when 7.8 g of potassium is burned in oxygen?

$$
4 \mathrm{~K}+\mathrm{O}_{2} \rightarrow 2 \mathrm{~K}_{2} \mathrm{O}
$$

Moles of Potassium $=7.8 / 39=0.2$
Moles of $\mathrm{K}_{2} \mathrm{O}=0.2 / 2=0.1$

Mr of $\mathrm{K} 2 \mathrm{O}=(39 \times 2)+16=94$

Mass of $\mathrm{K} 2 \mathrm{O}=0.1 \times 94=9.4 \mathrm{~g}$
3. Railway lines are welded together by the Thermite reaction which produces molten iron. What mass of iron is formed from 1 kg of iron oxide?

$$
\mathrm{Fe}_{2} \mathrm{O}_{3}+2 \mathrm{Al} \rightarrow 2 \mathrm{Fe}+\mathrm{Al}_{2} \mathrm{O}_{3}
$$

Mr of $\mathrm{Fe} 2 \mathrm{O} 3=160$

Moles of $\mathrm{Fe} 2 \mathrm{O} 3=1000 / 160=6.25$ moles

Moles of $\mathrm{Fe}=6.25 \times 2=12.5 \mathrm{moles}$

Mass of $\mathrm{Fe}=12.5 \times 56=700 \mathrm{~g}$
4. What mass of oxygen is required to oxidise 10 g of ammonia to NO ?

```
\(4 \mathrm{NH}_{3}+5 \mathrm{O}_{2} \rightarrow 4 \mathrm{NO}+6 \mathrm{H}_{2} \mathrm{O}\)
Mr of NH3 \(=17\)
Moles of NH3 \(=10 / 17=0.588\) moles
Moles of \(\mathrm{O} 2=0.588 \times 5 / 4=0.735\) moles
Mass of \(\mathrm{O} 2=0.735 \times 32=23.5 \mathrm{~g}\)
```

5. What mass of aluminium oxide is produced when 135 g of aluminium is burned in oxygen?

$$
2 \mathrm{Al}+3 \mathrm{O}_{2} \rightarrow \mathrm{Al}_{2} \mathrm{O}_{3}
$$

Moles of $\mathrm{Al}=135 / 27=5$ moles
Moles of $\mathrm{Al} 2 \mathrm{O} 3=5 \times 0.5=2.5$
Mr of $\mathrm{Al2O}=(27 \times 2)+(16 \times 3)=102$
Mass of $\mathrm{Al} 2 \mathrm{O} 3=2.5 \times 102=255 \mathrm{~g}$

Task 10 Answers:

1) In each case work out the limiting reagent and moles of ammonia forrt

$$
\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightarrow 2 \mathrm{NH}_{2}
$$

a) 3 moles of $\mathrm{N}_{2}+3$ moles of H_{2}
b) 3 moles of $\mathrm{N}_{2}+10$ moles of H_{2}
c) 0.1 moles of $\mathrm{N}_{2}+0.2$ moles of H_{2}
d) 0.5 moles of $\mathrm{N}_{2}+2.0$ moles of H_{2}
e) 2 moles of $\mathrm{N}_{2}+10$ moles of H_{2}

2) In each case work out the limiting reagent and moles of ammonia forr

$$
2 \mathrm{SO}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{SO}_{3}
$$

a) 3 moles of $\mathrm{SO}_{2}+3$ moles of O_{2}
b) 3 moles of $\mathrm{SO}_{2}+2$ moles of O_{2}

3	1.5	3
3	1.5	3
0.04	0.22	0.04
0.8	0.4	0.8
2	1	2

c) 0.1 moles of $\mathrm{SO}_{2}+0.02$ moles of O_{2}

2690 g

